The container was an example I used to show that water is affected by acceleration. You keep getting stuck on the direction of the acceleration. What if a stationary ball with very high mass had an acceleration pointing toward its center? Would the water stick to it then?
The centrifugal force of the earth is negligible because it's angular speed is very small. It revolves only once every 24 hours. You have confused linear speed with rotational speed. Try spinning a ball 1 revolution per day and see how much centrifugal force it has.
As for winds, that's another easy explanation if you think about it. The atmosphere is rotating with the land due to friction. Air behaves like a very thin fluid. Try putting water in a bucket and then spinning the bucket on its vertical axis... after a little while the water will be spinning with the bucket.
You keep telling telling me to do the math, but something tells me YOU haven't done the math.
The container was an example I used to show that water is affected by acceleration. You keep getting stuck on the direction of the acceleration. What if a stationary ball with very high mass had an acceleration pointing toward its center? Would the water stick to it then?
The centrifugal force of the earth is negligible because it's angular momentum is very small. It revolves only once every 24 hours. You have confused linear speed with rotational speed. Try spinning a ball 1 revolution per day and see how much centrifugal force it has.
As for winds, that's another easy explanation if you think about it. The atmosphere is rotating with the land due to friction. Air behaves like a very thin fluid. Try putting water in a bucket and then spinning the bucket on its vertical axis... after a little while the water will be spinning with the bucket.
You keep telling telling me to do the math, but something tells me YOU haven't done the math.